

The ecosystem approach to the fishery: influence of low trophic levels

Impact of plankton on fish stocks

3-5 April 2023 | Abuja, Nigeria

GKEPPAO (

Contributors to this work

- P. Licandro
- L. Magnone
- M.G. Mazzocchi
- I. Percopo
- R. Piscopo
- D. Sarno
- E. Scalco

S.Zampardi

Stazione Zoologica

Anton Dohrn

- J. El Abed,
- B. Mbengue
- A. Samba
- B. Meissa Habib

IMROP

- M. Camara,
- I. Diallo,
- D. Jouffre,

CNSHB, CERESCOR

3-5 April 2023 | Abuja, Nigeria

FISHERIES PRODUCTION IN THE CECAF REGION IS REGULATED BY BOTTOM-UP FORCING

Simplified food chain

<u>Bottom-up control</u> or control through primary production

Cury et al., 2016

Mechanisms driving fisheries production

Geographical distribution of the correlates of fisheries yield within Large Marine Ecosystems

Mcgowen et al., 2014

"Wind-driven nutrient supply is the dominant regulating factor of primary production off NW Africa"

Messié&Chavez, 2015

REPRODUCTION OF FISH DEPENDS ON PLANKTON AVAILABILITY

The match-mismatch hypothesis

"If recruitment-production at a given trophic level matches food availability, effective recruitment will be profound. If there is a mismatch between food requirement and food availability, effective recruitment will be low "

Cushing, 1969

Frequency

Larvae Larval food
(herring)

Match Mismatch

Time

The amount of plankton regulates the recruitment success. If matched, recruitment would be high within the limits of Variation of plankton production.

If mismatched, recruitment will be particularly low if plankton

IMPLEMENTING PLANKTON IN ECOSYSTEM APPROACH TO FISHERIES MANAGEMENT (EAFM) IN CECAF REGION

EAFM implementation issues

(from Garcia et el., 2003)- EAF implementation faces, and needs to resolve, a number of difficulties, many of which are already hampering the effectiveness of more conventional fisheries management. These difficulties relate to, inter alia:

✓ Lack of information, lack of scientific assessment;

- √ Non-matching of ecosystem and jurisdiction boundaries;
- ✓ Unclear or conflicting objectives;
- ✓ Insufficient collaboration between institutions in charge of fisheries and environmental management at national or regional levels;
- ✓ Lack of integration of fisheries in coastal areas management;
- √ Need for more transparency and participation;
- ✓ Lack of capacity for decentralization, redefinition (and strengthening) of the role of science;

DEMERSTEM CONTRIBUTION TO FILL KNOWLEDGE GAP ON MARINE PLANKTON IN CECAF REGION

Which are the main phytoplankton and zooplankton species/groups at the basis of the marine food chain in the CECAF region?

DEMERSTEM CONTRIBUTION TO FILL KNOWLEDGE GAP ON MARINE PLANKTON IN CECAF REGION

GATHER NEW INFORMATION ON PLANKTON DIVERSITY & DISTRIBUTION

ACTIONS: Case studies in Mauritania and Guinea

Q: Which groups represent the bulk of the phyto- and zooplankton communities?

Q: How diverse are plankton communities?

Q: Which are the main phyto- and zooplankton taxa/species?

Q: Are jellyfish outcompeting demersal fishes?

FINAL AIM: Identify key plankton descriptors to then monitor their changes

Strong influence of the upwelling, particularly in Northern Mauritania

Surface Chlorophyll a peaks in zones influenced by the upwelling (North) and on the shelf (Centre/South)

Different diatom taxa dominate the phytoplankton standing stock : North & Central regions

Different diatom taxa dominate the phytoplankton standing stock: Southern region

Zooplankton standing stock is dominated by copepods, but gelatinous filter feeders tend to increase in highly productive areas

Identification of zooplankton species that characterise the different zones

Central region Stations in the Small copepods <1mm (Oithona nana, Oncaea venusta) Medium/large copepods >1mm North, strongly (Centropages typicus) Temora turbinata influenced by the upwellin Gelatinous filter feeders (appendicularian Oikopleura spp., Calanoides natalis **SHALLOW WATERS** doliolids) Gelatinous filter feeders (appendicularian Fritillaria spp.) CHLa Medusae and Colonial siphonophore jellyfish (Liriope tetraphylla Medusae Muggiaea atlantica) St 47 Echinoiderm larvae Echinoderm larvae AVG OXYGEN **DEEP WATERS** Fish larvae Fish eggs **Southern region** MLD = mixed laver depth Ostracods OXYGEN measured in ppm St 62

PC1

Bivalvi larvae

Some small copepods

Fish larvae

Clausocalanus furcatus

The ecosystem approach to the fishery: influence of low trophic levels - Impact of plankton on fish stocks

St 30

Stations in the Centre, in

cold waters poor of oxygen

UI = temperature derived upwelling inde

CHRL = satellite measured chlorophyll a

AVGs = depth-averaged measurements

concentration, expressed in mg m^-3

S = salinitv

Northern region

Gather basic knowledge to better understand if jellyfish are outcompeting demersal fishes

Case study in **Mauritania** (2019)and in

Guinea (2020)

Chrysaora spp 18-Cyanea spp. Rhizostoma spp. Results from 2019-2020 Demersal Campaigns shows that 15different zone are characterised by different jellyfish species

-17.5 -17 -16.5

NEXT STEP

Define environmental preferences of key jellyfish species

Is acidification favouring Jellyfish vs fish? (PhD project SZN-Uni. Cadiz (Spain) & NANSEN project

The ecosystem approach to the fishery: influence of low trophic levels - Impact of plankton on fish stoo

14

Lower influence of the upwelling in the Guinean region, when compared

Lower surface chlorophyll a in Guinea than in Mauritania

16

Diatom taxa dominate the phytoplankton standing stock but it rises the contribution of other groups (dinoflagellates, cyanobacteria, coccolithophores)

Zooplankton standing stock is dominated by copepods, cladocerans and gelatinous filter feeders. Similar size of zooplankton stock in Guinea and Mauritania

Identification of zooplankton species that characterize different zones (but we need more environmental data to better define the habitats)

The ecosystem approach to the fishery: influence of low trophic levels - Impact of plankton on fish stocks

DEMERSTEM CONTRIBUTION TO FILL KNOWLEDGE GAPS ON MARINE PLANKTON IN CECAF REGION

NEXT STEPS:

Measure the impact of different plankton community on fish stocks

ACTIONS: Estimate zooplankton C-mass available to fish & fish larvae feeding on zooplankton in the different regions/subregions, as depending on the species that compose the zooplankton community C stock could significantly change

CHANGES IN DOMINANT COPEPOD SPECIES CAN NEGATIVELY IMPACT FISH STOCKS

Plankton community changes in the North Sea with shift in dominance between the cold water species Calanus finmarchicus and warm water species C. helgolandicus

Change in *Calanus* biomass in the North Sea: up to 70% decrease after the 1990s

North Sea cod stock (SSB) and recruitment have decreased since the late 1980s, in parallel with a decrease in zooplankton (mainly *Calanus*) biomass

Licandro, 2007. DEFRA Marine Fisheries Science Year Book 2006/2007, pp 16-18.

CHANGES IN DOMINANT COPEPOD SPECIES CAN NEGATIVELY IMPACT FISH STOCKS

Biomass of C. finmarchicus is significantly higher than that of C. helgolandicus due to its particular life cycle

Calanus biomass per unit Lenght DW (ug) /PL (mm) C. helgolandiicus C. finmarchicus 10^{l} J. helgo

C. finmarchicus accumulates lipid reserves to survive during the diapause duration

IMPLEMENTING PLANKTON IN ECOSYSTEM APPROACH TO FISHERIES MANAGEMENT (EAFM) IN CECAF REGION

DEMERSTEM LEGACY

- ✓ Some baseline information on phyto- & zooplankton composition and distribution.
- ✓ Contribution to building capacity to promote research on plankton in the CECAF region (new plankton nets and microscopes; information on plankton taxonomy made available).

POLICY MAKERS ROLE

√ Implement actions aimed to establish a harmonized network of environmental monitoring across ALL the Countries of the CECAF region

Thank you Merci